4.8 Article

Missing-Linker-Confined Single-Atomic Pt Nanozymes for Enzymatic Theranostics of Tumor

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202217995

关键词

Cancer Therapy; Metal-Organic Frameworks; Missing Linker; Nanozymes; Self-Assembly

向作者/读者索取更多资源

Researchers develop a facile missing-linker-confined coordination strategy to fabricate two self-assembled nanozymes: conventional nanozyme (NE) and single-atomic nanozyme (SAE). They consist of Pt nanoparticles and single Pt atoms as active catalytic sites anchored in metal-organic frameworks (MOFs) with encapsulated photosensitizers for catalase-mimicking enhanced photodynamic therapy. Compared to a Pt nanoparticle-based conventional nanozyme, a Pt single-atomic nanozyme shows enhanced catalase-mimicking activity in generating oxygen for overcoming tumor hypoxia, exhibiting more efficient reactive oxygen species generation and higher tumor inhibition rate.
Conventional nanozymes often possess low active site density. Pursuing effective strategies for constructing highly active single-atomic nanosystems with maximum atom utilization efficiency is exceptionally attractive. Herein, we develop a facile missing-linker-confined coordination strategy to fabricate two self-assembled nanozymes, i.e., conventional nanozyme (NE) and single-atomic nanozyme (SAE), which respectively consist of Pt nanoparticles and single Pt atoms as active catalytic sites anchored in metal-organic frameworks (MOFs) with encapsulated photosensitizers for catalase-mimicking enhanced photodynamic therapy. Compared to a Pt nanoparticle-based conventional nanozyme, a Pt single-atomic nanozyme shows enhanced catalase-mimicking activity in generating oxygen for overcoming tumor hypoxia, thus exhibiting a more efficient reactive oxygen species generation and high tumor inhibition rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据