4.8 Article

Direct and Specific Detection of Glyphosate Using a Phosphatase-like Nanozyme-Mediated Chemiluminescence Strategy

期刊

ANALYTICAL CHEMISTRY
卷 95, 期 9, 页码 4479-4485

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c05198

关键词

-

向作者/读者索取更多资源

This paper proposes a novel chemiluminescence strategy for the direct detection of glyphosate with high sensitivity and specificity using porous hydroxy zirconium oxide nanozyme. The nanozyme exhibits excellent phosphatase-like activity and can catalyze the dephosphorylation reaction to generate strong chemiluminescence. The nanozyme's phosphatase-like activity is closely related to the content of hydroxyl groups on its surface and can uniquely respond to glyphosate.
Most organophosphorus pesticide (OP) sensors reported in the literature rely on the inhibition effect of OPs on the activity of acetylcholinesterase (AChE), which suffer from the drawbacks of lack of selective recognition of OPs, high cost, and poor stability. Herein, we proposed a novel chemiluminescence (CL) strategy for the direct detection of glyphosate (an organophosphorus herbicide) with high sensitivity and specificity, which is based on the porous hydroxy zirconium oxide nanozyme (ZrOX-OH) obtained via a facile alkali solution treatment of UIO-66. ZrOX-OH displayed excellent phosphatase-like activity, which could catalyze the dephosphorylation of 3-(2 '-spiroadamantyl)-4-methoxy-4-(3 '-phosphoryloxyphenyl)-1,2-dioxetane (AMPPD) to generate strong CL. The experimental results showed that the phosphatase-like activity of ZrOX-OH is closely related to the content of hydroxyl groups on their surface. Interestingly, ZrOX-OH with phosphatase-like properties exhibited a unique response to glyphosate because of the consumption of the surface hydroxyl group by the unique carboxyl group of glyphosates and was thus employed to develop a CL sensor for direct and selective detection of glyphosate without using bio-enzymes. The recovery for glyphosate detection of cabbage juice ranged from 96.8 to 103.0%. We believe that the as-proposed CL sensor based on ZrOX-OH with phosphatase-like properties supplies a simpler and more highly selective approach for OP assay and provides a new method for the development of CL sensors for the direct analysis of OPs in real samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据