4.8 Article

Simultaneous Dual-Wavelength Source Raman Spectroscopy with a Handheld Confocal Probe for Analysis of the Chemical Composition of In Vivo Human Skin

期刊

ANALYTICAL CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c05065

关键词

-

向作者/读者索取更多资源

In this study, a portable confocal Raman spectroscopy system with a simultaneous dual-wavelength source and a miniaturized handheld probe was developed. The system can acquire spectra in both fingerprint and high wavenumber regions simultaneously. An innovative design and a unique Raman spectra separation algorithm were implemented to improve the efficiency and accuracy of spectra acquisition.
Confocal Raman spectroscopy (CRS) is a powerful tool that has been widely used for biological tissue analysis because of its noninvasive nature, high specificity, and rich biochemical information. However, current commercial CRS systems suffer from limited detection regions (450-1750 cm-1), bulky sizes, nonflexibilities, slow acquisitions by consecutive excitations, and high costs if using a Fourier transform (FT) Raman spectroscopy with an InGaAs detector, which impede their adoption in clinics. In this study, we developed a portable CRS system with a simultaneous dual-wavelength source and a miniaturized handheld probe (120 mm x 60 mm x 50 mm) that can acquire spectra in both fingerprint (FP, 450-1750 cm-1) and high wavenumber (HW, 2800-3800 cm-1) regions simultaneously. An innovative design combining 671 and 785 nm lasers for simultaneous excitation through a compact and high-efficiency (>90%) wavelength combiner was implemented. Moreover, to decouple the fused FP and HW spectra, a first-of-its-kind precise Raman spectra separation algorithm (PRSSA) was developed based on the maximum a posteriori probability (MAP) estimate. The accuracy of spectra separation was greater than 99%, demonstrated in both phantom experiments and in vivo human skin measurements. The total data acquisition time was reduced by greater than 50% compared to other CRS systems. The results proved our proposed CRS system and PRSSA's superior capability in fast and ultrawideband spectra acquisition will significantly improve the integration of CRS in the clinical workflow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据