4.8 Article

High-Throughput Nanoliter Sampling and Direct Analysis of Biological Fluids Using Droplet Imbibition Mass Spectrometry

期刊

ANALYTICAL CHEMISTRY
卷 95, 期 18, 页码 7093-7099

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c03830

关键词

-

向作者/读者索取更多资源

A high-throughput droplet imbibition mass spectrometry experiment was developed for direct analysis of ultra-small volumes of complex mixtures. This method utilizes glass capillaries and charged microdroplets to sample and transfer the analyte, resulting in increased sensitivity and analysis efficiency.
A high-throughput droplet imbibition mass spectrometry (MS) experiment is reported for the first time that allows direct analysis of ultra-small volumes of complex mixtures. In this experiment, an array of optimized tips of glass capillaries containing the analyte solution is sampled by rapidly moving charged microdroplets, which picks up (i.e., imbibes) the analyte and transfers it to a proximal mass spectrometer. The advantages associated with this droplet imbibition experiment include (1) ultra-small sample consumption (1.3 nL/ min), which reduces the matrix effect in complex mixture analysis, and (2) high surface activity, which eliminates ion suppression effects caused by competition for the space charge on the droplet surface. Collectively, the enhanced surface effect and small flow rates dramatically increase the sensitivity of the droplet imbibition MS approach. This was experimentally shown by constructing calibration curves for cocaine analysis in human raw urine and whole blood, achieving 2 and 7 pg/mL limits of detection, respectively. The high-throughput feature was demonstrated by analyzing five structurally different compounds in 20 s intervals. With the measured flow rate of 1.3 nL/min on a 5 mu m glass tip size, the results described in the current study showcase droplet imbibition MS to be a powerful and high-throughput alternative for conventional nano-electrospray ionization (flow rate <100 nL/min), which is the most efficient method for transferring small sample volumes to mass spectrometers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据