4.8 Article

Ultrasensitive Electrochemiluminescence Biosensor Based on 2D Co3O4 Nanosheets as a Coreaction Accelerator and Highly Ordered Rolling DNA Nanomachine as a Signal Amplifier for the Detection of MicroRNA

期刊

ANALYTICAL CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c05116

关键词

-

向作者/读者索取更多资源

A novel ultrasensitive electrochemiluminescence (ECL) biosensor was developed using 2D Co3O4 nanosheets as a coreaction accelerator for the detection of miRNA-21. The Co3O4 nanosheets promoted the decomposition of H2O2 to generate more O2.-, which enhanced the ECL signals by reacting with luminol. Additionally, the biosensor achieved ultrasensitive detection of miRNA-21 through the self-assembly of highly ordered rolling DNA nanomachines.
A novel ultrasensitive electrochemiluminescence (ECL) biosensor was constructed using two-dimensional (2D) Co3O4 nanosheets as a novel coreaction accelerator of the luminol/H2O2 ECL system for the detection of microRNA-21 (miRNA-21). Impressively, coreaction accelerator 2D Co3O4 nanosheets with effective mutual conversion of the Co2+/Co3+ redox pair and abundant active sites could promote the decomposition of coreactant H2O2 to generate more superoxide anion radicals (O2 center dot-), which reacted with luminol for significantly enhancing ECL signals. Furthermore, the trace target miRNA-21 was transformed into a large number of G-wires through the strand displacement amplification (SDA) process to self-assemble the highly ordered rolling DNA nanomachine (HORDNM), which could tremendously improve the detection sensitivity of biosensors. Hence, on the basis of the novel luminol/H2O2/2D Co3O4 nanosheet ternary ECL system, the biosensor implemented ultrasensitive detection of miRNA-21 with a detection limit as low as 4.1 aM, which provided a novel strategy to design an effective ECL emitter for ultrasensitive detection of biomarkers for early disease diagnosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据