4.8 Article

Engineered Cancer Cells as Signal Probes for Fluorescence-Assisted Digital Counting Analysis

期刊

ANALYTICAL CHEMISTRY
卷 95, 期 8, 页码 4227-4234

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c05684

关键词

-

向作者/读者索取更多资源

Fluorescence-assisted digital counting analysis was achieved by engineering fluorescent dye-stained cancer cells with magnetic nanoparticles to construct single-cell probes for sensitive quantification of targets. Various engineering strategies, including biological recognition and chemical modification, were used to design rational single-cell probes. The advantages of single-cell probes, such as high brightness, large size, ease of preparation, and magnetic separation, contributed to the sensitive and selective analysis of targets of interest.
Fluorescence-assisted digital counting analysis allowed sensitive quantification of targets by measuring individual fluorescent labels. However, traditional fluorescent labels suffered from low brightness, small size, and sophisticated preparation procedures. Herein, engineering fluorescent dye-stained cancer cells with magnetic nanoparticles were proposed to construct single -cell probes for fluorescence-assisted digital counting analysis by quantifying the target-dependent binding or cleaving events. Various engineering strategies of cancer cells including biological recognition and chemical modification were developed for rationally designing single-cell probes. Introduction of suitable recognition elements into single-cell probes allowed digital quantification of each target-dependent event via counting the colored single-cell probes in the representative image taken using a confocal microscope. The reliability of the proposed digital counting strategy was corroborated by traditional optical microscopy-and flow cytometry-dependent counting technologies. The advantages of single-cell probes, including high brightness, big size, ease of preparation, and magnetic separation, contributed to the sensitive and selective analysis of targets of interest. As proof-to-concept assays, indirect analysis of exonuclease III (Exo III) activity, as well as direct quantitation of cancer cells, were investigated, and the potential in biological sample analysis was also assessed. This sensing strategy will open a new avenue for the development of biosensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据