4.8 Article

Microelectromechanical Microsystems-Supported Photothermal Immunoassay for Point-of-Care Testing of Aflatoxin B1 in Foodstuff

期刊

ANALYTICAL CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c05617

关键词

-

向作者/读者索取更多资源

A portable photothermal immunosensing platform supported by a microelectromechanical microsystem (MEMS) was developed for quick and cost-effective identification of acutely toxic and low-fatality mycotoxins, which is critical for reducing population mortality.
Accurate identification of acutely toxic and low-fatality mycotoxins on a large scale in a quick and cheap manner is critical for reducing population mortality. Herein, a portable photothermal immunosensing platform supported by a microelectromechanical microsystem (MEMS) without enzyme involvement was reported for point-of-care testing of mycotoxins (in the case of aflatoxin B1, AFB1) in food based on the precise satellite structure of Au nanoparticles. The synthesized Au nanoparticles with a well-defined, graded satellite structure exhibited a significantly enhanced photothermal response and were coupled by AFB1 antibodies to form signal conversion probes by physisorption for further target-promoted competitive responses in microplates. In addition, a coin-sized miniature NIR camera device was constructed for temperature acquisition during target testing based on advanced MEMS fabrication technology to address the limitation of expensive signal acquisition components of current photothermal sensors. The proposed MEMS readout-based microphotothermal test method provides excellent AFB1 response in the range of 0.5-500 ng g-1 with detection limits as low as 0.27 ng g-1. In addition, the main reasons for the efficient photothermal transduction efficiency of Au with different graded structures were analyzed by finite element simulations, providing theoretical guidance for the development of new Au-based photothermal agents. In conclusion, the proposed portable micro-photothermal test system offers great potential for point-of-care diagnostics for residents, which will continue to facilitate immediate food safety identification in resource-limited regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据