4.8 Article

The Reaction Mechanism with Free Energy Barriers at Constant Potentials for the Oxygen Evolution Reaction at the IrO2 (110) Surface

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 1, 页码 149-155

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b07557

关键词

-

资金

  1. Office of Science of the U.S. Department of Energy [DE-SC0004993, DE-AC02-05CH11231]

向作者/读者索取更多资源

How to efficiently oxidize H2O to O-2 (oxygen evolution reaction, OER) in photoelectrochemical cells (PEC) is a great challenge due to its complex charge transfer process, high overpotential, and corrosion. So far no OER mechanism has been fully explained atomistically with both thermodynamic and kinetics. IrO2 is the only known OER catalyst with both high catalytic activity and stability in acidic conditions. This is important because PEC experiments often operate at extreme pH conditions. In this work, we performed first-principles calculations integrated with implicit solvation at constant potentials to examine the detailed atomistic reaction mechanism of OER at the IrO2 (110) surface. We determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models. This allowed us to resolve several long-standing puzzles about the atomistic OER mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据