4.8 Article

Influence of Constitution and Charge on Radical Pairing Interactions in Tris-radical Tricationic Complexes

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 138, 期 26, 页码 8288-8300

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b04343

关键词

-

资金

  1. National Science Foundation (NSF) [CHE-1308107]
  2. Office of Science of the U.S. Department of Energy [DE-SC0004993]
  3. NSF [CHE-1565925]
  4. Chinese Scholarship Council
  5. Foresight Institute
  6. Earth-Life Science Institute
  7. Howard Hughes Medical Institute through the Life Sciences Research Foundation
  8. Direct For Mathematical & Physical Scien
  9. Division Of Chemistry [1565925] Funding Source: National Science Foundation
  10. Division Of Chemistry
  11. Direct For Mathematical & Physical Scien [1308107] Funding Source: National Science Foundation

向作者/读者索取更多资源

The results of a systematic investigation of trisradical tricationic complexes formed between cyclobis(paraquat-p-phenylene) bisradical dicationic (CBPQT(2(center dot+))) rings and a series of 18 dumbbells, containing centrally located 4,4'-bipyridinium radical cationic (BIPY center dot+) units within oligomethylene chains terminated for the most part by charged 3,5-dimethylpyridinium (PY+) and/or neutral 3,5-dimethylphenyl (PH) groups, are reported. The complexes were obtained by treating equimolar amounts of the CBPQT(4+) ring and the dumbbells containing BIPY2+ units with zinc dust in acetonitrile solutions. Whereas UV-Vis-NIR spectra revealed absorption bands centered on ca. 1100 nm with quite different intensities for the 1:1 complexes depending on the constitutions and charges on the dumbbells, titration experiments showed that the association constants (K-a) for complex formation vary over a wide range, from 800 M-1 for the weakest to 180 000 M-1 for the strongest. While Coulombic repulsions emanating from PY+ groups located at the ends of some of the dumbbells undoubtedly contribute to the destabilization of the trisradical tricationic complexes, solid-state superstructures support the contention that those dumbbells with neutral PH groups at the ends of flexible and appropriately constituted links to the BIPY center dot+ units stand to gain some additional stabilization from C-H center dot center dot center dot pi interactions between the CBPQT(2(center dot+)) rings and the PH termini on the dumbbells. The findings reported in this Article demonstrate how structural changes implemented remotely from the BIPY center dot+ units influence their non-covalent bonding interactions with CBPQT(2(center dot+)) rings. Different secondary effects (Coulombic repulsions versus C-H center dot center dot center dot pi interactions) are uncovered, and their contributions to both binding strengths associated with trisradical interactions and the kinetics of associations and dissociations are discussed at some length, supported by extensive DFT calculations at the M06-D3 level. A fundamental understanding of molecular recognition in radical complexes has relevance when it comes to the design and synthesis of non-equilibrium systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据