4.8 Article

Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 138, 期 49, 页码 15821-15824

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b10049

关键词

-

资金

  1. Qatar Environment and Energy Research Institute (QEERI)
  2. Hamad Bin Khalifa University (HBKU)
  3. Qatar Foundation (Doha, Qatar)
  4. Marie Sklodowska Curie Fellowship [665667, 588072]
  5. National Research Fund of Luxembourg [C14/MS/8345352]

向作者/读者索取更多资源

Compositional engineering of a mixed cation/mixed halide perovskite in the form of (FAP-bI(3))(0.85)(MAPbBr(3))(0.15) is one of the most effective strategies to obtain record-efficiency perovskite solar cells. However, the perovskite self-organization upon crystallization and the final elemental distribution, which are paramount for device optimization, are still poorly understood. Here we map the nanoscale charge carrier and elemental distribution of mixed perovskite films yielding 20% efficient devices. Combining a novel in-house-developed high resolution helium ion microscope coupled with a secondary ion mass spectrometer (HIM-SIMS) with Kelvin probe force microscopy (KPFM), we demonstrate that part of the mixed perovskite film intrinsically segregates into iodide-rich perovskite nanodomains on a length scale of up to a few hundred nanometers. Thus, the homogeneity of the film is disrupted, leading to a variation in the optical properties at the micrometer scale. Our results provide unprecedented understanding of the nanoscale perovskite composition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据