4.8 Article

Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in Waterless Toluene

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 138, 期 18, 页码 5749-5752

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b13101

关键词

-

资金

  1. National Natural Science Foundation of China [NSFC 21271179, 21436007]
  2. Program for New Century Excellent Talents [NCET-13-0364]

向作者/读者索取更多资源

Methylammonium lead halide perovskites suffer from poor stability because of their high sensitivity to moisture. Inorganic material coatings of SiO2 are preferred for coupling with perovskites to improve their stability, whereas the conventional SiO2 formation method is unsuitable because it requires water. Here, a simple SiO2 generation method based on the high hydrolysis rate of tetramethyl orthosilicate in analytical-grade toluene was developed to avoid the addition of water and catalyst. As a result, SiO2-encapsulated CH3NH3PbBr3 quantum dots (MAPB-QDs/SiO2) were fabricated without decreasing the quantum yield. Photostability tests indicated that the MAPB-QDs/SiO2 samples were markedly more stable than the unencapsulated MAPB-QDs. The photoluminescence (PL) of the MAPB-QDs/SiO2 powders was maintained at 94.10% after 470 nm LED illumination for 7 h, which was much higher than the remnant PL (38.36%) of the pure MAPB-QD sample under a relative humidity of 60%. Similar test results were observed when the MAPB-QDs/SiO2 powders were incorporated into the poly(methyl methacrylate) films. The enhanced photo stability is ascribed to the SiO2 barriers protecting the MAPB-QDs from degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据