4.8 Article

Three-in-One: Sensing, Self-Assembly, and Cascade Catalysis of Cyclodextrin Modified Gold Nanoparticles

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 138, 期 51, 页码 16645-16654

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b07590

关键词

-

资金

  1. National Natural Science Foundation of China [21275001, 21422501, 21573002]
  2. Foundation for Innovation Team of Bioanalytical Chemistry

向作者/读者索取更多资源

We herein present a three-in-one nanoplatform for sensing, self-assembly, and cascade catalysis, enabled by cyclodextrin modified gold nanoparticles (CD@AuNPs). Monodisperse AuNPs 15-20 nm in diameter are fabricated in an eco-friendly way by the proposed one-step colloidal synthesis method using CD as both reducing agents and stabilizers. First, the as-prepared AuNPs are employed as not only scaffolds but energy acceptors for turn-on fluorescent sensing based on guest replacement reaction. Then, the macrocyclic supramolecule functionalized AuNPs can be controllably assembled and form well-defined one- and two-dimensional architectures using tetrakis(4-carboxyphenyl)porphyrin as mediator. Finally, in addition to conventional host-guest interaction based properties, the CD@AuNPs possess unpredictable catalytic activity and exhibit mimicking properties of both glucose oxidase and horseradish peroxidase simultaneously. Especially, the cascade reaction (glucose is first catalytically oxidized and generates gluconic acid and H2O2; then the enzymatic H2O2 and preadded TMB (3,3',5,5'-tetramethylbenzidine) are further catalyzed into H2O and oxTMB, respectively) is well-achieved using the AuNPs as the sole catalyst. By employing a joint experimental-theoretical study, we reveal that the unique catalytic properties of the CD@AuNPs probably derive from the special topological structures of CD molecules and the resulting electron transfer effect from the AuNP surface to the appended CD molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据