4.7 Article

Future trends of reference evapotranspiration in Sicily based on CORDEX data and Machine Learning algorithms

期刊

AGRICULTURAL WATER MANAGEMENT
卷 280, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.agwat.2023.108232

关键词

Climate change; Artificial Intelligence algorithms; Clustering; Ensemble models; Mediterranean climate; Irrigation planning

向作者/读者索取更多资源

The study evaluated the reference evapotranspiration in Sicily using historical and future climate parameters, and divided the region into three homogeneous areas using a hierarchical algorithm. Machine learning algorithms were then used to forecast future evapotranspiration. The results showed that evapotranspiration increased for all three regions during the forecast period, with higher increases observed in the inland areas. This approach provides a comprehensive analysis of evapotranspiration trends in different regions.
In years of increasing impact of climate change effects, a reliable characterization of the spatiotemporal evolutionary dynamics of evapotranspiration can enable a significant improvement in water resource management, especially as regards irrigation activities. Sicily, an insular region of Southern Italy, has exceptionally valuable agricultural production and high irrigation needs. In this study, the ETo reference evapotranspiration in Sicily was first evaluated on the basis of historical and future climate parameters, referring for future values to two climate scenarios characterized by different Representative Concentration Pathways: RCP 4.5 and RCP 8.5. Then, the Hierarchical algorithm was used to divide Sicily into three homogeneous regions, each characterized by specific ETo features. In addition, some Machine Learning (ML) algorithms were used to develop forecasting models based on only historical data. Support Vector Regression (SVR) was used to predict the future values of Tmin and Tmax, while an ensemble model based on Multilayer Perceptron (MLP) and M5P Regression Tree was developed for the ETo forecasting. Predictions made with the ensemble MLP-M5P model were compared with the ETo computed for the RCP 4.5 and RCP 8.5 future climate scenarios. During the forecast period, from 2001 to 2091, evapotranspiration increases were observed for all three clusters. For cluster C1, along the coast, percentage increases of 7.52%, 14.64% and 10.78%, were computed for RCP 4.5, RCP 8.5, and MLP-M5P, respectively, while, for cluster C3, in the inland, percentage increases were higher and equal to 8.12%, 16.71%, and 14.98%, respectively. The ensemble MLP-M5P model led to intermediate trends between RCP 4.5 and RCP 8.5, showing a high correlation with the latter (R2 between 0.93 and 0.98). The developed approach, based on both clustering and forecasting algorithms, provided a comprehensive analysis of the reference evapotranspiration, with the detection of the different homogeneous regions and, at the same time, the evaluation of the evapotranspiration trends, both in coastal and inland areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据