4.7 Article

Modelling aboveground biomass and productivity and the impact of climate change in Mediterranean forests of South Spain

期刊

AGRICULTURAL AND FOREST METEOROLOGY
卷 337, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.agrformet.2023.109498

关键词

Aridity; Forest structure; National forest inventory; NDVI; Satellite-remote variables

向作者/读者索取更多资源

The objective of this study is to understand the carbon storage and forest productivity of Mediterranean forests using remote and in field-based variables, and to predict future trends. The results show that aridity is a key factor determining the carbon storage and productivity of Mediterranean forests, and that future increases in aridity under climate change scenarios could significantly reduce their carbon sink role.
One of the main challenges under global warming is understanding and predicting the effects of increased aridity on the carbon sink role of forests, particularly in Mediterranean regions. Forest inventories monitor the real state of the forest at a high temporal and financial cost. Cloud computing tools and high spatio-temporal resolution datasets generate fast and low-cost remote sensing data. Our objective is to understand the underlying variables explaining carbon storage (aboveground biomass) and forest productivity of Mediterranean forests using remote and in field-based variables and predict expected future trends. Then, we quantify the potential effects of a hypothetical increase in aridity under climate change on aboveground biomass and forest productivity. We included remote sensing indices (NDVI), abiotic factors (climate, soil and topography) and biotic factors (forest structure) as key variables of forest biomass and productivity in a large and heterogeneous Mediterranean region (Andalusia, southern Spain). We used around 7000 forest plots from the second and the third Spanish National Forest Inventory (1995 and 2006) considering the eight most abundant species (Olea europaea, Pinus pinea, P. pinaster, P. halepensis, P. nigra, P. sylvestris, Quercus ilex subsp ballota, and Q. suber). The variance explained by the models ranged from 25% in Q. ilex forests to 65% in P. sylvestris forests. Aridity affected all-species and Quercus biomass and most productivity models. NDVI and tree density had a strong positive effect on forest biomass and productivity with a significant interaction effect in all-species models, whereas aridity had a negative effect on both. The predicted increase in aridity under future climate change scenarios could seriously reduce forest biomass by 18% and productivity by 16%. Our study suggests that aridity is a key factor determining forest biomass and productivity in Mediterranean forests, that could potentially lead to reductions of their carbon sink role.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据