4.8 Article

Solvent-Free and Skin-Like Supramolecular Ion-Conductive Elastomers with Versatile Processability for Multifunctional Ionic Tattoos and On-Skin Bioelectronics

期刊

ADVANCED MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202304157

关键词

hydrogen bonds; ionic tattoos; on-skin electronics; stretchable ionic conductors; supramolecular elastomers

向作者/读者索取更多资源

A solvent-free supramolecular ion-conductive elastomer (SF-supra-ICE) is developed by encapsulating an ionizable compound with a biocompatible polymer via high-density hydrogen bonds. The SF-supra-ICE exhibits excellent biocompatibility, high ionic conductivity, and skin-like softness, and can be used to create customizable on-skin bioelectronics.
The development of stable and biocompatible soft ionic conductors, alternatives to hydrogels and ionogels, will open up new avenues for the construction of stretchable electronics. Here, a brand-new design, encapsulating a naturally occurring ionizable compound by a biocompatible polymer via high-density hydrogen bonds, resulting in a solvent-free supramolecular ion-conductive elastomer (SF-supra-ICE) that eliminates the dehydration problem of hydrogels and possesses excellent biocompatibility, is reported. The SF-supra-ICE with high ionic conductivity (>3.3 x 10(-2) S m(-1)) exhibits skin-like softness and strain-stiffening behaviors, excellent elasticity, breathability, and self-adhesiveness. Importantly, the SF-supra-ICE can be obtained by a simple water evaporation step to solidify the aqueous precursor into a solvent-free nature. Therefore, the aqueous precursor can act as inks to be painted and printed into customized ionic tattoos (I-tattoos) for the construction of multifunctional on-skin bioelectronics. The painted I-tattoos exhibit ultraconformal and seamless contact with human skin, enabling long-term and high-fidelity recording of various electrophysiological signals with extraordinary immunity to motion artifacts. Human-machine interactions are achieved by exploiting the painted I-tattoos to transmit the electrophysiological signals of human beings. Stretchable I-tattoo electrode arrays, manufactured by the printing method, are demonstrated for multichannel digital diagnosis of the health condition of human back muscles and spine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据