4.8 Article

Chemical Control of Plasmons in Metal Chalcogenide and Metal Oxide Nanostructures

期刊

ADVANCED MATERIALS
卷 27, 期 38, 页码 5830-5837

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201502218

关键词

chalcogenides; localized surface plasmon resonance (LSPR); nanocrystals; oxides; plasmons

资金

  1. Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) [DE-AC02-447 05CH11231]
  2. Physical Chemistry of Inorganic Nanostructures Program, Office of Basic Energy Sciences of the United States Department of Energy [KC3103, DE-AC02-05CH11232]

向作者/读者索取更多资源

The field of plasmonics has grown to impact a diverse set of scientific disciplines ranging from quantum optics and photovoltaics to metamaterials and medicine. Plasmonics research has traditionally focused on noble metals; however, any material with a sufficiently high carrier density can support surface plasmon modes. Recently, researchers have made great gains in the synthetic (both intrinsic and extrinsic) control over the morphology and doping of nanoscale oxides, pnictides, sulfides, and selenides. These synthetic advances have, collectively, blossomed into a new, emerging class of plasmonic metal chalcogenides that complement traditional metallic materials. Chalcogenide and oxide nanostructures expand plasmonic properties into new spectral domains and also provide a rich suite of chemical controls available to manipulate plasmons, such as particle doping, shape, and composition. New opportunities in plasmonic chalcogenide nanomaterials are highlighted in this article, showing how they may be used to fundamentally tune the interaction and localization of electromagnetic fields on semiconductor surfaces in a way that enables new horizons in basic research and energy-relevant applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据