4.8 Article

Energy-Trapping Management in X-Ray Storage Phosphors for Flexible 3D Imaging

期刊

ADVANCED MATERIALS
卷 35, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202212022

关键词

doping; halide perovskites; storage phosphors; X-ray imaging

向作者/读者索取更多资源

A new generation X-ray storage phosphor material, CsCdCl3:Mn2+, Zr4+, was designed and synthesized with improved performance by manipulating Mn2+ site occupation and heterovalent substitution. This material exhibited zero-thermal-quenching radioluminescence and anti-TQ X-ray-activated persistent luminescence, achieving high storage capacities and high-resolution X-ray imaging.
X-ray imaging has received sustained attention for healthcare diagnostics and nondestructive inspection. To develop photonic materials with tunable photophysical properties in principle accelerates radiation detection technologies. Here the rational design and synthesis of doped halide perovskite CsCdCl3:Mn2+, R4+ (R = Ti, Zr, Hf, and Sn) are reported as next generation X-ray storage phosphors, and the capability is greatly improved by trap management via Mn2+ site occupation manipulation and heterovalent substitution. Specially, CsCdCl3:Mn2+, Zr4+ displays zero-thermal-quenching (TQ) radioluminescence and anti-TQ X-ray-activated persistent luminescence even up to 448 K, further revealing the charge-carrier compensation and redeployment mechanisms. X-ray imaging with the resolution of 12.5 lp mm(-1) is demonstrated, and convenient 3D X-ray imaging for the curved objects is realized in a time-lapse manner. This work demonstrates efficient modulation of energy traps to achieve high storage capacities and promote future research into flexible X-ray detectors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据