4.8 Article

Over 18% Efficiency of All-Polymer Solar Cells with Long-Term Stability Enabled by Y6 as a Solid Additive

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

Chlorination Enabling a Low-Cost Benzodithiophene-Based Wide-Bandgap Donor Polymer with an Efficiency of over 17%

Hang Wang et al.

Summary: Three regioregular benzodithiophene-based donor-donor (D-D)-type polymers were designed, synthesized, and used in organic solar cells (OSCs), with one of them, PBDTT1Cl, demonstrating superior performance in terms of power conversion efficiency, charge mobility, and nonradiative energy loss.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Polymerized Small Molecular Acceptor with Branched Side Chains for All Polymer Solar Cells with Efficiency over 16.7%

Yun Li et al.

Summary: This study successfully achieved efficient all-polymer solar cells by designing and synthesizing a series of polymer acceptors. Through the investigation of the structure-property relationship of polymer acceptors, new insights into polymer acceptors were provided, and a feasible approach to develop efficient conjugated polymer acceptors was paved.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss

Xiaopeng Duan et al.

Summary: This study demonstrates the successful fabrication of efficient ternary organic solar cells by introducing ZY-4Cl as a third component. The ternary system exhibits reduced voltage loss, improved molecular ordering, and suppressed non-radiative recombination, leading to higher efficiencies compared to binary blends.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Volatile Solid Additive-Assisted Sequential Deposition Enables 18.42% Efficiency in Organic Solar Cells

Jianqiang Qin et al.

Summary: The study introduces a volatile solid additive-assisted sequential deposition strategy to optimize the morphology of the active layer in organic solar cells, resulting in enhanced performance. The combination of a volatile solid additive and sequential deposition method proves to be effective in developing high-performance OSCs.

ADVANCED SCIENCE (2022)

Article Chemistry, Physical

Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology

Lei Zhu et al.

Summary: Morphological control of donor and acceptor domains is crucial for efficient organic photovoltaics, and this study demonstrates a double-fibril network strategy to achieve a high power conversion efficiency of 19.3%.

NATURE MATERIALS (2022)

Article Chemistry, Physical

Geminate and Nongeminate Pathways for Triplet Exciton Formation in Organic Solar Cells

Alberto Privitera et al.

Summary: This study investigates the formation mechanism of triplet excitons in organic solar cells, revealing differences in triplet formation between fullerene and nonfullerene acceptor systems. Engineering good donor and acceptor domain purity is crucial for suppressing losses via triplet excitons in OSCs.

ADVANCED ENERGY MATERIALS (2022)

Article Chemistry, Physical

Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics

Lingling Zhan et al.

Summary: By constructing ternary organic photovoltaics, the open-circuit voltage (V-oc) loss is reduced, leading to a higher voltage without sacrificing the absorbing range. In addition, the ternary blend exhibits enhanced charge transport property and a higher fill factor.
Article Chemistry, Multidisciplinary

Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics

Chengliang He et al.

Summary: This study investigates the advantages of using the sequential casting (SC) method for bulk heterojunction (BHJ)-based organic solar cells (OSCs). It is found that SC processing can achieve better morphology and device performance compared to the widely-used blend casting (BC) method. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to explain the morphology evolution during SC processing. Moreover, the vertical phase segregation is found to improve device performance through affecting charge transport and collection processes.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

All-Polymer Solar Cells with 17% Efficiency Enabled by the End-Capped Ternary Strategy

Yuchen Yue et al.

Summary: Recently, researchers have proposed a novel approach to improve the performance of all-polymer solar cells by introducing a third component. The results show that the solar cells fabricated using this method exhibit impressive power conversion efficiency, stability, and tolerance to thickness variations.

ADVANCED SCIENCE (2022)

Article Materials Science, Multidisciplinary

Solid additive engineering enables high-efficiency and eco-friendly all-polymer solar cells

Jiali Song et al.

Summary: The study demonstrates that the incorporation of 2-methoxynaphthalene (2-MN) into PM6:PY-DT blend can effectively manipulate the aggregations of molecules and achieve high efficiency for all-polymer solar cells (all-PSCs). The use of 2-MN as a green and solid additive is a simple and feasible strategy to optimize morphology, promoting eco-friendly fabrication and application of all-PSCs.

MATTER (2022)

Article Materials Science, Multidisciplinary

Morphology evolution via solvent optimization enables all-polymer solar cells with improved efficiency and reduced voltage loss

Zhenye Li et al.

Summary: The researchers successfully regulated the bulk-heterojunction (BHJ) morphology of all-polymer solar cells (all-PSCs) by selecting solvents and optimized the morphology evolution, resulting in improved power conversion efficiency.

JOURNAL OF MATERIALS CHEMISTRY C (2022)

Article Chemistry, Physical

Fluorinated End Group Enables High-Performance All-Polymer Solar Cells with Near-Infrared Absorption and Enhanced Device Efficiency over 14%

Han Yu et al.

Summary: Fluorination of end groups enhances the performance of polymer acceptors, leading to higher power conversion efficiency in all-polymer solar cells.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

High-Performance All-Polymer Solar Cells with a Pseudo-Bilayer Configuration Enabled by a Stepwise Optimization Strategy

Qiang Wu et al.

Summary: In this study, a high-efficiency PBDB-T/PYT all-organic solar cell was successfully fabricated using a special LbL deposition technique, achieving an efficiency of 15.17% through synergistic control of additive dosages. It was found that this synergistic control of additive dosages was also confirmed in other photovoltaic systems.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor

Huiting Fu et al.

Summary: A new class of narrow-bandgap polymer acceptors, the PZT series, was developed to address challenges in all-polymer solar cells, resulting in improved performance due to red-shifted optical absorption and up-shifted energy levels. The regioregular PZT-gamma was specifically designed to avoid isomer formation during polymerization, leading to enhanced efficiency, short-circuit current density, and energy loss in all-PSCs.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Multidisciplinary

High-Efficiency Organic Photovoltaics using Eutectic Acceptor Fibrils to Achieve Current Amplification

Ming Zhang et al.

Summary: By utilizing the new physical properties of intimate eutectic mixing in nonfullerene-acceptor-based D-A(1)-A(2) ternary blends, the thin film morphology and electronic properties in organic solar cells are finely tuned to achieve significant enhancement in power conversion efficiency (PCE). The aligned cascading energy levels and suppressed recombination channels confirm efficient charge transfer and transport, leading to an improved PCE of 17.84%.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Nonradiative Triplet Loss Suppressed in Organic Photovoltaic Blends with Fluoridated Nonfullerene Acceptors

Rui Wang et al.

Summary: The research shows that using fluorinated nonfullerene acceptors in organic photovoltaic blends can suppress the bimolecular recombination of spin-uncorrelated electrons and holes, prolonging the lifetime of charge carriers. This fluorination effect can be explained by modifying the energy alignment between the charge-transfer and locally excited triplet excited states.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Multidisciplinary Sciences

Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design

Jiaqi Du et al.

Summary: Recent advancements have been made in all-polymer solar cells (all-PSCs) based on polymerized small molecular acceptors (PSMAs). Two new A-DA'D-A small molecule acceptor based PSMAs, PS-Se and PN-Se, were synthesized to study the impact of molecular structure on photovoltaic performance. Cryogenic transmission electron microscopy and photoinduced force microscopy revealed the aggregation behavior and morphology of the polymer and acceptor blend films, leading to higher power conversion efficiency in all-PSCs.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Physical

Cold-Aging and Solvent Vapor Mediated Aggregation Control toward 18% Efficiency Binary Organic Solar Cells

Chuanhang Guo et al.

Summary: The cold-aging strategy can mediate the pre-aggregation of PM6 polymer in solution through a disorder-order transition, resulting in dense and fine PM6 aggregates with enhanced pi-pi stacking in blend films with non-fullerene acceptors. This approach improves charge mobility and leads to enhanced power conversion efficiency in organic solar cells.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

The performance-stability conundrum of BTP-based organic solar cells

Yunpeng Qin et al.

Summary: Organic photovoltaic technology has achieved high power conversion efficiency, but achieving long-term stability is crucial. Research has identified a structure-T-g framework for BTP acceptors and shown that PC71BM can improve stability under certain conditions.
Article Materials Science, Multidisciplinary

High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy

Jiali Song et al.

Summary: The use of a solvent additive strategy with diiodomethane (DIM) instead of 1,8-diiodooctane (DIO) has been effective in reducing high voltage loss (V-loss) in organic solar cells (OSCs), leading to improved power conversion efficiency (PCE) and open-circuit voltage (V-oc). The approach has also been successfully applied to different blends, achieving high PCEs with reduced V-loss.

MATTER (2021)

Article Chemistry, Multidisciplinary

A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells

Yun Li et al.

Summary: The ternary strategy has been proven effective for enhancing the power conversion efficiency of organic solar cells. A new design principle for selecting the appropriate third component, such as the non-fullerene acceptor, has been proposed and shown to significantly improve efficiency. This approach offers a promising pathway for further enhancing the performance of ternary OSCs.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Multidisciplinary Sciences

Long-range exciton diffusion in molecular non-fullerene acceptors

Yuliar Firdaus et al.

NATURE COMMUNICATIONS (2020)

Article Materials Science, Multidisciplinary

Boosting the efficiency of PTB7-Th:PC71BM polymer solar cells via a low-cost halogen-free supramolecular solid additive

Qiang Zhang et al.

JOURNAL OF MATERIALS CHEMISTRY C (2020)

Article Chemistry, Multidisciplinary

15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive

Dingqin Hu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

High Exciton Diffusion Coefficients in Fused Ring Electron Acceptor Films

Sreelakshmi Chandrabose et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Review Chemistry, Multidisciplinary

All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects

Gang Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Multidisciplinary Sciences

1,8-diiodooctane acts as a photo-acid in organic solar cells

Nutifafay Doumon et al.

SCIENTIFIC REPORTS (2019)

Article Multidisciplinary Sciences

Design and application of volatilizable solid additives in non-fullerene organic solar cells

Runnan Yu et al.

NATURE COMMUNICATIONS (2018)

Article Chemistry, Multidisciplinary

High-Performance Ternary Organic Solar Cell Enabled by a Thick Active Layer Containing a Liquid Crystalline Small Molecule Donor

Guichuan Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Article Chemistry, Multidisciplinary

Molecular Lock: A Versatile Key to Enhance Efficiency and Stability of Organic Solar Cells

Pei Cheng et al.

ADVANCED MATERIALS (2016)

Article Chemistry, Multidisciplinary

Efficient Organic Solar Cells with Helical Perylene Diimide Electron Acceptors

Yu Zhong et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Review Materials Science, Multidisciplinary

Additives for morphology control in high-efficiency organic solar cells

Hsueh-Chung Liao et al.

MATERIALS TODAY (2013)

Article Chemistry, Multidisciplinary

Processing additives for improved efficiency from bulk heterojunction solar cells

Jae Kwan Lee et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2008)

Article Polymer Science

Morphology and phase segregation of spin-casted films of Polyfluorene/PCBM blends

Svante Nilsson et al.

MACROMOLECULES (2007)

Review Chemistry, Multidisciplinary

Device physics of polymer:fullerene bulk heterojunction solar cells

Paul W. M. Blom et al.

ADVANCED MATERIALS (2007)