4.8 Article

Peptide-Crosslinked, Highly Entangled Hydrogels with Excellent Mechanical Properties but Ultra-Low Solid Content

期刊

ADVANCED MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202210021

关键词

chain entanglement; hydrogels; mechanical properties; peptide; solid content

向作者/读者索取更多资源

Hydrogels with ultra-low solid content but good mechanical properties are successfully synthesized using high monomer concentrations and low cross-linker/monomer ratios. The introduction of peptide chains through a poly(l-lysine)-based cross-linker contributes to the gel's excellent mechanical properties, including high stretchability, high tensile strength, superb resilience, high fracture toughness, excellent fatigue resistance, low friction, and high wear resistance. These properties, attributed to the highly entangled structure and a novel energy dissipation mechanism, allow the peptide-crosslinked gel to perform comparably to or better than traditional hydrogels with higher solid content.
Low solid content is the ultimate reason for the brittleness and weakness of ordinary hydrogels. Here, hydrogels with ultra-low solid content but good mechanical properties are successfully synthesized using high monomer concentrations and low cross-linker/monomer ratios to obtain highly entangled structure and poly(l-lysine)-based cross-linker to introduce peptide chains. Compared with hydrogel cross-linked with N,N'-methylenebisacrylamide (BIS), the peptide-crosslinked one has a larger swelling degree in water, leading to fully swollen gel with ultra-low solid content (5.8%). However, it still exhibits excellent mechanical properties, including high stretchability (440%), high tensile strength (220 KPa), superb resilience (99%), high fracture toughness (2100 J m(-2)), excellent fatigue resistance (720 J m(-2)), low friction (0.0059), and high wear resistance. These properties are comparable to or even better than the BIS-crosslinked hydrogel, although the former has much lower solid content. The excellent mechanical properties of the peptide-crosslinked gel are attributed to its highly entangled structure and also to the introduction of a novel mechanism for energy dissipation, that is, energy dissipation via breakage of intramolecular hydrogen bonds stabilizing the helical structure of the peptide.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据