4.8 Article

Fluid Flow Templating of Polymeric Soft Matter with Diverse Morphologies

期刊

ADVANCED MATERIALS
卷 35, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202211438

关键词

nanofabrication; nanoscience and technology; polymer colloids; processing; soft matter

向作者/读者索取更多资源

A universal method based on polymer precipitation templated by fluid streamlines in multiphasic flow is explored for fabricating diverse nano- and micro-scale morphologies. By systematically investigating the process conditions, 12 distinct classes of polymer micro- and nano-structures are identified. The liquid shear-based technique shows potential as a versatile and scalable nanofabrication tool.
It is challenging to find a conventional nanofabrication technique that can consistently produce soft polymeric matter of high surface area and nanoscale morphology in a way that is scalable, versatile, and easily tunable. Here, the capabilities of a universal method for fabricating diverse nano- and micro-scale morphologies based on polymer precipitation templated by the fluid streamlines in multiphasic flow are explored. It is shown that while the procedure is operationally simple, various combinations of its intertwined mechanisms can controllably and reproducibly lead to the formation of an extraordinary wide range of colloidal morphologies. By systematically investigating the process conditions, 12 distinct classes of polymer micro- and nano-structures including particles, rods, ribbons, nanosheets, and soft dendritic colloids (dendricolloids) are identified. The outcomes are interpreted by delineating the physical processes into three stages: hydrodynamic shear, capillary and mechanical breakup, and polymer precipitation rate. The insights into the underlying fundamental mechanisms provide guidance toward developing a versatile and scalable nanofabrication platform. It is verified that the liquid shear-based technique is versatile and works well with many chemically diverse polymers and biopolymers, showing potential as a universal tool for simple and scalable nanofabrication of many morphologically distinct soft matter classes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据