4.8 Article

Encoded Structural Color Microneedle Patches for Multiple Screening of Wound Small Molecules

期刊

ADVANCED MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202211330

关键词

encode; hydrogel; microneedle; patch; sensor; structural color

向作者/读者索取更多资源

Detection of biomarkers associated with wound conditions provides in-depth healthcare information and benefits wound healing treatment.
Detection of biomarkers associated with wound conditions provides in-depth healthcare information and benefits wound healing treatment. The current aim of wound detection is to achieve in situ multiple detections. Novel encoded structural color microneedle patches (EMNs) combining photonic crystals (PhCs) and microneedle arrays (MNs) for multiple wound biomarker detection in situ are described here. Using a partitioned and layered casting strategy, the EMNs can be divided into different modules and each serves for the detection of small molecules , including pH, glucose, and histamine. pH sensing is based on the interaction between hydrogen ions and carboxyl groups from hydrolyzed polyacrylamide (PAM); glucose sensing is achieved with the help of glucose-responsive fluorophenylboronic acid (FPBA); while histamine sensing relies on specific recognition of aptamers and target molecules. Owing to the responsive volume change of these three modules in the presence of target molecules, the EMNs can create structural color change and characteristic peak shift of the PhCs, thus realizing the qualitative measurement of target molecules with a spectrum analyzer. It is further demonstrated that the EMNs behave well in the multivariate detection of rat wound molecules. These features indicate that the EMNs can be valuable smart detection systems for wound status screening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据