4.8 Article

Adipose Mesenchymal Stem Cell Derived Exosomes Promote Keratinocytes and Fibroblasts Embedded in Collagen/Platelet-Rich Plasma Scaffold and Accelerate Wound Healing

期刊

ADVANCED MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202303642

关键词

adipose mesenchymal stem cells; exosomes; keratinocytes; platelet-rich plasma; scaffolds; skin tissue engineering; wound healings

向作者/读者索取更多资源

Engineered skin substitutes derived from human skin reduce inflammatory reactions and are easier to use in clinics. Type I collagen and platelet-rich plasma are mixed to form a stable scaffold, while adipose mesenchymal stem cell derived exosomes improve the performance of the engineered skin. This method provides a new therapeutic strategy and theoretical basis for tissue regeneration and wound repair.
Engineered skin substitutes derived from human skin significantly reduce inflammatory reactions mediated by foreign/artificial materials and are consequently easier to use for clinical application. Type I collagen is a main component of the extracellular matrix during wound healing and has excellent biocompatibility, and platelet-rich plasma can be used as the initiator of the healing cascade. Adipose mesenchymal stem cell derived exosomes are crucial for tissue repair and play key roles in enhancing cell regeneration, promoting angiogenesis, regulating inflammation, and remodeling extracellular matrix. Herein, Type I collagen and platelet-rich plasma, which provide natural supports for keratinocyte and fibroblast adhesion, migration, and proliferation, are mixed to form a stable 3D scaffold. Adipose mesenchymal stem cell derived exosomes are added to the scaffold to improve the performance of the engineered skin. The physicochemical properties of this cellular scaffold are analyzed, and the repair effect is evaluated in a full-thickness skin defect mouse model. The cellular scaffold reduces the level of inflammation and promotes cell proliferation and angiogenesis to accelerate wound healing. Proteomic analysis shows that exosomes exhibit excellent anti-inflammatory and proangiogenic effects in collagen/platelet-rich plasma scaffolds. The proposed method provides a new therapeutic strategy and theoretical basis for tissue regeneration and wound repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据