4.8 Review

Flexible and Stretchable Organic Electrochemical Transistors for Physiological Sensing Devices

期刊

ADVANCED MATERIALS
卷 35, 期 35, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202209906

关键词

biosensing; e-skin; flexible and stretchable electronics; organic electrochemical transistors; physiological sensing

向作者/读者索取更多资源

Flexible and stretchable bioelectronics, such as organic electrochemical transistors (OECTs), have received significant attention for in situ monitoring of biological systems. These devices exhibit advantages in biological sensing due to their ionic switching behavior, low driving voltage, and high transconductance. Recent research has focused on developing flexible/stretchable OECTs (FSOECTs) for biochemical and bioelectrical sensors, and this review summarizes the major accomplishments and challenges in this field.
Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据