4.8 Article

Dynamic Reconstitution Between Copper Single Atoms and Clusters for Electrocatalytic Urea Synthesis

期刊

ADVANCED MATERIALS
卷 35, 期 18, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202300020

关键词

active sites; clusters; copper single atoms; dynamic reconstitutions; urea synthesis

向作者/读者索取更多资源

Reported herein is a method for synthesizing urea using copper single atoms decorated on a CeO2 support (Cu-1-CeO2) as the catalyst, which exhibits an average urea yield rate of 52.84 mmol h(-1) g(cat.)(-1) at -1.6 V versus reversible hydrogen electrode. Operando X-ray absorption spectra demonstrate the reconstitution of copper single atoms (Cu-1) to clusters (Cu-4) during electrolysis. Favorable C-N coupling reactions and urea formation on Cu-4 are validated using operando synchrotron-radiation Fourier transform infrared spectroscopy and theoretical calculations. Dynamic and reversible transformations of clusters to single-atom configurations occur when the applied potential is switched to an open-circuit potential, endowing the catalyst with superior structural and electrochemical stabilities.
Electrocatalytic C-N coupling between carbon dioxide and nitrate has emerged to meet the comprehensive demands of carbon footprint closing, valorization of waste, and sustainable manufacture of urea. However, the identification of catalytic active sites and the design of efficient electrocatalysts remain a challenge. Herein, the synthesis of urea catalyzed by copper single atoms decorated on a CeO2 support (denoted as Cu-1-CeO2) is reported. The catalyst exhibits an average urea yield rate of 52.84 mmol h(-1) g(cat.)(-1) at -1.6 V versus reversible hydrogen electrode. Operando X-ray absorption spectra demonstrate the reconstitution of copper single atoms (Cu-1) to clusters (Cu-4) during electrolysis. These electrochemically reconstituted Cu-4 clusters are real active sites for electrocatalytic urea synthesis. Favorable C-N coupling reactions and urea formation on Cu-4 are validated using operando synchrotron-radiation Fourier transform infrared spectroscopy and theoretical calculations. Dynamic and reversible transformations of clusters to single-atom configurations occur when the applied potential is switched to an open-circuit potential, endowing the catalyst with superior structural and electrochemical stabilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据