4.8 Review

Materials for Cell Surface Engineering

期刊

ADVANCED MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202210059

关键词

cell surface coatings; cell therapy; cellular engineering; drug delivery; microparticles; nanomedicine

向作者/读者索取更多资源

Cell therapies have shown promise in treating previously incurable diseases, and the engineering of cell surfaces with various materials has emerged as a valuable tool to enhance their therapeutic performance. This review summarizes recent advances in decorating cell surfaces with nanoparticles, microparticles, and polymeric coatings, and highlights the benefits of surface modifications in protecting carrier cells, enhancing cell trafficking, and delivering therapeutic agents. While these technologies are still in the proof-of-concept stage, their promising efficacy from preclinical studies provides a strong foundation for future clinical translation, revolutionizing the field of cell therapies.
Cell therapies are emerging as a promising new therapeutic modality in medicine, generating effective treatments for previously incurable diseases. Clinical success of cell therapies has energized the field of cellular engineering, spurring further exploration of novel approaches to improve their therapeutic performance. Engineering of cell surfaces using natural and synthetic materials has emerged as a valuable tool in this endeavor. This review summarizes recent advances in the development of technologies for decorating cell surfaces with various materials including nanoparticles, microparticles, and polymeric coatings, focusing on the ways in which surface decorations enhance carrier cells and therapeutic effects. Key benefits of surface-modified cells include protecting the carrier cell, reducing particle clearance, enhancing cell trafficking, masking cell-surface antigens, modulating inflammatory phenotype of carrier cells, and delivering therapeutic agents to target tissues. While most of these technologies are still in the proof-of-concept stage, the promising therapeutic efficacy of these constructs from in vitro and in vivo preclinical studies has laid a strong foundation for eventual clinical translation. Cell surface engineering with materials can imbue a diverse range of advantages for cell therapy, creating opportunities for innovative functionalities, for improved therapeutic efficacy, and transforming the fundamental and translational landscape of cell therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据