4.8 Article

A Floating Integrated Solar Micro-Evaporator for Self-Cleaning Desalination and Organic Degradation

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 33, 期 28, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202214769

关键词

floating integrated interfacial micro-evaporator; comprehensive solar water treatment; photothermal; catalytic coupling; photothermal-enhanced organic degradation; self-cleaning desalination

向作者/读者索取更多资源

A floating photothermal/catalytic-integrated interfacial micro-evaporator is developed for solar-driven desalination and organic degradation, achieving high conversion efficiency and efficient removal of pollutants.
Safe and clean freshwater harvesting from (organic-containing) saline or wastewater holds great potential for mitigating water scarcity and pollution, but remains challenging. Herein, a floating photothermal/catalytic-integrated interfacial micro-evaporator (g-C3N4@PANI/PS) is reported as a proof-of-concept multifunctional scavenger evaporator system (MSES) to achieve both solar-driven complete desalination and organic degradation. The spherical porous lightweight polystyrene core, incorporated with a black surface functional layer (g-C3N4@PANI), enables the hybrid micro-evaporator to naturally float and thereby collectively self-assemble under surface tension for interfacial evaporation, which achieves preeminent self-cleaning for complete salt/solute separation and efficient organic photodegradation under rotation. Remarkably, the floating micro-evaporator achieves a high solar-vapor conversion efficiency of approximate to 90% with high interfacial energy localization and provides abundant active photocatalytic sites on the interface, which is further enhanced by interfacial photothermal cooperation. High photo-driven degradation efficiencies of 99% for nonvolatile organic compounds (non-VOC) bisphenol A and 95% for VOC phenol in wastewater are achieved. An outdoor comprehensive solar water treatment test toward organic-containing high-salinity sewage verifies the feasibility of MSES for sustainable freshwater harvesting (1.3 kg m(-2) h(-1)), downstream salt recovery, and organic degradation. This strategy may inspire an integrated solution of water scarcity, clean energy, and environmental pollution toward carbon neutrality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据