4.8 Article

Multi-Healable, Mechanically Durable Double Cross-Linked Polyacrylamide Electrolyte Incorporating Hydrophobic Interactions for Dendrite-Free Flexible Zinc-Ion Batteries

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202304470

关键词

double cross-linked; flexible aqueous zinc-ion batteries; hydrogel electrolytes; hydrophobic interactions; self-healing

向作者/读者索取更多资源

Flexible aqueous zinc-ion batteries (ZIBs) are hindered by zinc dendrite growth and poor mechanical durability at the electrolyte-electrode interface. This study develops multi-healable and mechanically durable hydrogel electrolytes to improve the durability and extend the lifetime of flexible ZIBs. The obtained double cross-linked polyacrylamide electrolyte (PAAm-O-B) exhibits good mechanical properties and stable electrochemical performance, leading to high capacity and long cycle lifespan for flexible Zn//MnO2 batteries.
Flexible aqueous zinc-ion batteries (ZIBs) are considered as one of the most promising energy storage candidates for wearable electronics, owing to their environmental friendliness, low cost, high safety, and high theoretical capacity. However, the practical application of flexible ZIBs is significantly impeded by the Zn dendrite growth and the poor mechanical endurability at the electrolyte-electrode interface. Mechanically durable hydrogel electrolyte with dendrite growth restriction and self-healing ability is highly desirable to improve the durability and extend the lifetime of the flexible ZIBs. However, it is still a big challenge to simultaneously endow hydrogel electrolytes with all necessary properties. Herein, multi-healable and mechanically durable hydrogels are fabricated by the synergy effect of strong chemical cross-linking and dynamic physical hydrophobic associations. The obtained double cross-linked polyacrylamide electrolyte (PAAm-O-B) has good tensile strain, strength, and stable electrochemical performance, with tensile strength up to 75 kPa, high self-healing efficiency up to 50 broken-healed cycles and lifespan up to 900 h dendrite inhibition behavior. The flexible Zn//MnO2 batteries using PAAm-O-B hydrogel electrolytes exhibit good mechanical durability with high specific capacity and long cycle lifespan even under 1000 bending deformations and superior self-healing ability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据