4.8 Article

Symmetry-Mismatch-Induced Ferromagnetism in the Interfacial Layers of CaRuO3/SrTiO3 Superlattices

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 33, 期 22, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202300338

关键词

CaRuO3; itinerant ferromagnetism; oxygen octahedra tilting; superlattices

向作者/读者索取更多资源

By modifying the entangled multi-degrees of freedom of transition-metal oxides, the symmetry-mismatch-driven interfacial phase transition from paramagnetic to ferromagnetic state is achieved in this work. The interfacial layer of CaRuO3, with approximately 3 unit cells in thickness, shows robust ferromagnetic order with a high Curie temperature of approximately 120 K and a large saturation magnetization of approximately 0.7 mu(B) per formula unit. Density functional theory calculations reveal that the reduced tilting/rotation of RuO6 octahedra favors an itinerant ferromagnetic ground state. This study demonstrates an effective approach to tune phases by coupled octahedral rotations and offers new opportunities for the exploration of emergent materials with desired functionalities.
By modifying the entangled multi-degrees of freedom of transition-metal oxides, interlayer coupling usually produces interfacial phases with unusual functionalities. Herein, a symmetry-mismatch-driven interfacial phase transition from paramagnetic to ferromagnetic state is reported. By constructing superlattices using CaRuO3 and SrTiO3, two oxides with different oxygen octahedron networks, the tilting/rotation of oxygen octahedra near interface is tuned dramatically, causing an angle increase from approximate to 150 degrees to approximate to 165 degrees for the Ru-O-Ru bond. This in turn drives the interfacial layer of CaRuO3, approximate to 3 unit cells in thickness, from paramagnetic into ferromagnetic state. The ferromagnetic order is robust, showing the highest Curie temperature of approximate to 120 K and the largest saturation magnetization of approximate to 0.7 mu(B) per formula unit. Density functional theory calculations show that the reduced tilting/rotation of RuO6 octahedra favors an itinerant ferromagnetic ground state. This work demonstrates an effective phase tuning by coupled octahedral rotations, offering a new approach to explore emergent materials with desired functionalities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据