4.8 Article

Large Annular Dipoles Bounded between Single-Atom Co and Co Cluster for Clarifying Electromagnetic Wave Absorbing Mechanism

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202304442

关键词

Co clusters; electromagnetic wave absorbing mechanism; nitrogen-doped graphene; single-atom Co; synergistic effect

向作者/读者索取更多资源

By controlling the concentration of copper atoms, the dipole polarization and relaxation of the copper atoms can be adjusted, thus achieving optimized dipole moments and excellent absorption performance.
It is very challenging to demonstrate the intrinsic feature and absorption mechanism for electromagnetic (EM) wave absorber since dipole polarization loss is always discussed together with magnetic loss, conductive loss, defects/interfacial polarization, and so on. To address this issue, here, a kind of atomic composites is reported, including single-atom Co and Co cluster with controllable atom dipole to tune the polarization and establish the link between dipole polarization and the EM wave absorption. Using a chemical synthesis route, the atomic composites are fabricated, including Co single-atom (SA) sites and cluster (Cs) on nitrogen-doped graphitic carbon (Co1+Cs/NGC). Due to the special design, the effect of magnetic loss, conductive loss, and interfacial polarization on EM wave dissipation can be ignored so that it can only highlight dielectric loss caused by dipole polarization. And, by controlling the Co atoms concentration, it can tune the valence state of Co atoms between 0 to +2 to control dipole polarization and relaxation. As a result, the Co1+Cs/NGC-2 with Co concentration of 6.0 wt% exhibits optimized dipole moments and thus excellent absorption performance (the reflection loss exceeds -54.3 dB, and the effective absorption bandwidth with RL <=-10 dB reaches 7.0 GHz at 2.0 mm) due to the effective dipole polarization caused by the large annular dipole bounded between Co SA sites and Co Cs. This study proposes a simplified model to clarify EM wave absorption mechanism from atom view.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据