4.8 Article

Hierarchical Integrated Hybrid Structural Electrodes Based on Co-N/C and Mo-doped NiCo-LDH@Co-N/C Anchored on MX/CF for High Energy Density Fiber-Shaped Supercapacitor

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202302388

关键词

bi-metal; fiber-shaped supercapacitors; layered double hydroxide; metal organic frameworks; MXenes

向作者/读者索取更多资源

The judicious design of highly electrochemically active materials on 1D fiber substrate to form a hierarchical integrated hybrid structure is an efficient technique to improve the limited cylindrical space and volumetric energy density of fiber-shaped supercapacitors (FSCs).
The judicious design of highly electrochemically active materials on 1D fiber substrate to form a hierarchical integrated hybrid structure is an efficient technique to improve the limited cylindrical space and volumetric energy density of fiber-shaped supercapacitors (FSCs). Herein, a 3D negative electrode, consisting of vertically aligned interconnected mesoporous Co-N/C leaf-like structure on 1D MXene-carbon fiber (Co-N/C@MX/CF) is prepared by controlling the composition and morphology. At the same time, a 3D positive electrode is also prepared by introducing Mo in NiCo-LDH anchored on Co-N/C@MX/CF (Mo-NiCo-LDH@Co-N/C@MX/CF) by electrodeposition method. Benefitting from the systematic hierarchical structures with highly accessible surface area, adequate pore size and easy permeation of electrolyte, both positive and negative electrodes demonstrate highly improved electrochemical performance with areal capacity/capacitance of 0.96 mAh cm(-2)/4.55 mF cm(-2) at a current density of 3.86 mA cm(-2), respectively. Furthermore, the fiber-shaped solid-state hybrid supercapacitor (FSHSC) based on Mo1.5NiCo-LDH@Co-N/C@MX/CF(+)//Co-N/C-0.5@MX/CF(-) is fabricated, exhibiting compelling energy density of 86.72 mWh cm(-3) at a power density of 480.30 mW cm(-3) with an outstanding capacitance retention of 80.2% after 20000 galvanostatic-charge-discharge cycles. This study puts forward a new perspective on the development of highly efficient FSCs for practical application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据