4.8 Article

Self-Healable Spider Dragline Silk Materials

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202303571

关键词

graphene; nephila pilipes; self-healing; spider silk; wearable electronics

向作者/读者索取更多资源

Developing materials with structural flexibility for self-repair is challenging. Spider silk is used to create a novel self-healing material. The R2 and R2G proteins extracted from spider silk can be used for electronic applications, such as repairable logic gate circuits and re-configurable wearable probes. This research provides a new paradigm for developing future adaptive biomaterials.
Developing materials with structural flexibility that permits self-repair in response to external disturbances remains challenging. Spider silk, which combines an exceptional blend of strength and pliability in nature, serves as an ideal dynamic model for adaptive performance design. In this work, a novel self-healing material is generated using spider silk. Dragline silk from spider Nephila pilipes is demonstrated with extraordinary in situ self-repair property through a constructed thin film format, surpassing that of two other silks from spider Cyrtophora moluccensis and silkworm Bombyx mori. Subsequently, R2, a key spidroin associated with self-healing, is biosynthesized, with validated cohesiveness. R2 is further programmed with tunable healability (permanent and reversible) and conductivity (graphene doping; R2G) for electronics applications. In the first demonstration, film strips from R2 and R2G are woven manually into multidimensional (1D-3D) conductive fabrics for creating repairable logic gate circuits. In the second example, a reversibly-healable R2/R2G strip is fabricated as a re-configurable wearable ring probe to fit fingertips of varying widths while retaining its detecting capabilities. Such a prototype displays a unique conformable wearable technology. Last, the remarkable finding of self-healing in spider silk can offer a new material paradigm for developing future adaptive biomaterials with tailored performance and environmental sustainability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据