4.6 Article

Electrostatic Powder Coating as a Novel Process for High-Voltage Insulation Applications

期刊

ADVANCED ENGINEERING MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adem.202300465

关键词

electrical insulation; high voltages; powder coating; process optimization

向作者/读者索取更多资源

This article presents a novel strategy for manufacturing the main insulation of high-voltage rotating machines using electrostatic powder coating equipment. The process is fully automated, allowing for precise and reproducible application of homogeneous powder coating layers. The strategy improves powder adhesion and minimizes defect density, surpassing the state-of-the-art process in terms of partial discharge activity.
A novel strategy for manufacturing of the main insulation of high-voltage rotating machines is presented. The developed process is based on established electrostatic powder coating equipment. Using complete automation enables the precise and reproducible application of homogeneous powder coating layers. Individual layers can be stacked by process repetitions to achieve a desired layer thickness. This coating strategy alters the particle deposition process by introducing additional capillary bridges that significantly increase powder adhesion. A systematic parameter study is performed to provide process-structure relations connecting various process parameters with the resultant coating thickness and homogeneity. The parameters of the developed coating process are iteratively improved to maximize coating homogeneity and minimize defect density, the most critical parameters in high-voltage insulation applications. The obtained powder coatings with a target thickness of 1.5 mm are subjected to electrical testing to examine the partial discharge activity as a key criterion for a functional insulating coating. The measurements reveal no significant partial discharge activity up to an electric field strength of 10 kV mm(-1), demonstrating that this novel strategy for the production of the main insulation of high-voltage rotating equipment surpasses the state-of-the-art process in terms of partial discharge activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据