4.7 Article

Role of disclinations around kink bands on deformation behavior in Mg-Zn-Y alloys with a long-period stacking ordered phase

期刊

ACTA MATERIALIA
卷 248, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2023.118785

关键词

Magnesium alloys; Long -period stacking ordered phase; Mille-feuille structure; Disclination; Kink -band strengthening

向作者/读者索取更多资源

The excellent mechanical properties of Mg-Zn-Y alloys with a Mg-based long-period stacking ordered (LPSO) phase are attributed to the kink bands formed by plastic deformation. This study investigated the strengthening mechanism of kink bands in directionally solidified single-phase LPSO Mg85Zn6Y9 alloys. It was found that the presence of disclinations and dislocation pile-ups contribute to the kink-band strengthening. The study provides insights into the factors responsible for kink-band strengthening in LPSO-phase Mg alloys.
Mg-Zn-Y alloys that contain an Mg-based long-period stacking ordered (LPSO) phase exhibit excellent mechanical properties because of the kink bands formed by plastic deformation. Such kink-band strengthening has attracted significant attention. Herein, we conducted deformation tests on directionally solidified single-phase LPSO Mg85Zn6Y9 alloys to investigate the kink-band strengthening mechanism. High-angular resolution electron backscatter diffraction was performed to detect misorientation between the matrices on either side of the kink bands. The misorientations corresponded to the magnitudes of the Frank vectors of the disclinations around the kink, and closely matched the estimations from geometric analysis, which supported the existence of disclinations. Moreover, the Frank vector of the kink bands increased after shear deformation, which indicates that shear deformation introduced new disclinations around the kinks. Scanning electron microscopy demonstrated that the kinks clearly obstructed basal (a) slip. Furthermore, scanning transmission electron microscopy of a sheared kink band revealed dislocation pile-ups on both sides of the kink/matrix interface, as well as the formation of secondary kinks that stabilized the structure against shear deformation (i.e., self-accommodation) and bend contours caused by elastic stress fields. The results suggest that disclinations behave as long-range obstacles to dislocation motion (e.g., by reducing the increase in kink-band self-energy or by the elastic stress field of disclinations). We believe that this study will play a key role in identifying the factors responsible for kink-band strengthening in LPSO-phase Mg alloys and in understanding the phenomena underlying the strengthening mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据