4.7 Article

Fundamental links between shear transformation, fi relaxation, and string-like motion in metallic glasses

期刊

ACTA MATERIALIA
卷 246, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2023.118701

关键词

Metallic glasses; Plastic deformation; relaxation; String-like motion; Accelerated molecular dynamics

向作者/读者索取更多资源

In this study, molecular dynamics simulations and metadynamics are used to investigate the atomic rearrangement mechanism in glass materials. It is shown that there is a correlation between string-like cooperative motions and plastic deformation in amorphous materials.
Plastic deformation and relaxation dynamics are two major topics in glass physics. Secondary (fi) relaxation has been assumed to be a relevant plastic mechanism in amorphous solids, e.g., metallic glasses (MGs), at the macroscopic scale. However, due to the constraints of the time scale of traditional computer simulation, it is still an open question whether the correlation can be justified at the atomic level, or is it just a correlation in a mean-field sense? In this work, molecular dynamics simulations augmented with metadynamics are conducted to study the basic atomic rearrangement mechanism up to experimentally relevant timescales (up to milliseconds). We show that in a unique Al90Sm10 MG with pronounced fi relaxation, the atoms initiating the plastic deformation are exactly the ones apt to develop string-like cooperative motions, as expected from the perspective of fi relaxation. For a Y65Cu35MG without obvious fi relaxation, string-like motions are rarely observed in the deformation of participating atoms, although their atomic displacements are also aligned in a correlative manner. Therefore, our laboratory long-time-scale observation enables the in situ construction of a fundamental link among the versatile concepts of shear transformation, fi relaxation, and string-like motion in amorphous materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据