4.7 Article

Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications

期刊

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
卷 99, 期 9, 页码 2977-2983

出版社

WILEY
DOI: 10.1111/jace.14323

关键词

polymer precursor; porous materials; electrochemistry; aerogel/aerosol; silicon oxycarbide

资金

  1. German Research Foundation [SFB 595/A4, SPP 1473/JP8]
  2. EU through the MC ITN FUNEA [CT-264873]

向作者/读者索取更多资源

SiOC ceramic aerogels with different porosity, pore size, and specific surface area have been synthesized through the polymer-derived ceramic route by modifying the synthesis parameters and the pyrolysis steps. Preceramic aerogels are prepared by cross-linking a linear polysiloxane with divinylbenzene (DVB) via hydrosilylation reaction in the presence of a Pt catalyst under highly diluted conditions. Acetone and cyclohexane are used as solvent in our study. Wet gels are subsequently supercritically dried with CO2 to get the final preceramic aerogels. The SiOC ceramic aerogels are obtained after a pyrolysis treatment at 900 degrees C in two different atmospheres: pure Ar and H-2 (3%)/Ar mixtures. The nature of the solvent has a profound influence of the aerogel microstructure in terms of porosity, pore size, and specific surface area. Synthesized SiOC ceramic aerogels have similar chemical compositions irrespective of processing conditions with similar to 40 wt% of free carbon distributed within remaining mixed SiOC matrix. The BET surface areas range from 215 m(2)/g for acetone samples to 80 m(2)/g for samples derived from cyclohexane solvent. The electrochemical characterization reveals a high specific reversible capacity of more than 900 mAh/g at a charging rate of C (360 mA/g) along with a good cycling stability. Samples pyrolyzed in H-2/Ar atmosphere show a high reversible capacity of 200 mAh/g even at a high charging/discharging rate of 20 C. Initial capacities were recovered after whole cycling procedure indicating their structural stabilities resisting any kind of exfoliations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据