4.8 Article

Hybrid Heterostructures to Generate Long- Lived and Mobile Photocarriers in Graphene

期刊

ACS NANO
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.2c12577

关键词

graphene; van der Waals heterostructure; ultrafast dynamics; diffusion; organic semiconductor

向作者/读者索取更多资源

We report the generation of long-lived and highly mobile photocarriers in hybrid van der Waals heterostructures that consist of monolayer graphene, few-layer transition metal dichalcogenides, and the organic semiconductor F8ZnPc. Photocarriers in the heterostructures can achieve long recombination lifetimes and high mobility by transferring electrons from F8ZnPc to graphene and separating them from the holes in F8ZnPc. The use of these artificial heterostructures can enhance the performance of graphene-based optoelectronic devices.
We report the generation of long-lived and highly mobile photocarriers in hybrid van der Waals heterostructures that are formed by monolayer graphene, few-layer transition metal dichalcogenides, and the organic semiconductor F8ZnPc. Samples are fabricated by dry transfer of mechanically exfoliated MoS2 or WS2 few-layer flakes on a graphene film, followed by deposition of F8ZnPc. Transient absorption microscopy measurements are performed to study the photocarrier dynamics. In heterostructures of F8ZnPc/few-layer-MoS2/ graphene, electrons excited in F8ZnPc can transfer to graphene and thus be separated from the holes that reside in F8ZnPc. By increasing the thickness of MoS2, these electrons acquire long recombination lifetimes of over 100 ps and a high mobility of 2800 cm2 V-1 s-1. Graphene doping with mobile holes is also demonstrated with WS2 as the middle layers. These artificial heterostructures can improve the performance of graphene-based optoelectronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据