4.8 Article

Highly Oxidized Oxide Surface toward Optimum Oxygen Evolution Reaction by Termination Engineering

期刊

ACS NANO
卷 17, 期 7, 页码 6811-6821

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.3c00387

关键词

oxygen evolution reaction; spinel oxide; termination engineering; oxidized oxygen; facet

向作者/读者索取更多资源

The oxygen evolution reaction (OER) is a critical step for sustainable fuel production. This study demonstrates the development of a surface termination similar to oxyhydroxide in an oxide, which enhances the intrinsic activity of the nanocatalyst and breaks the scaling relationship limit.
The oxygen evolution reaction (OER) is a critical step for sustainable fuel production through electrochemistry process. Maximizing active sites of nanocatalyst with enhanced intrinsic activity, especially the activation of lattice oxygen, is gradually recognized as the primary incentive. Since the surface reconfiguration to oxyhydroxide is unavoidable for oxygen-activated transition metal oxides, developing a surface termination like oxyhydroxide in oxides is highly desirable. In this work, we demonstrate an unusual surface termination of (111)-facet Co3O4 nanosheet that is exclusively containing edge-sharing octahedral Co3+ similar to CoOOH that can perform at approximately 40 times higher current density at 1.63 V (vs RHE) than commercial RuO2. It is found that this surface termination has an oxidized oxygen state in contrast to standard Co-O systems, which can serve as active site independently, breaking the scaling relationship limit. This work forwards the applications of oxide electrocatalysts in the energy conversion field by surface termination engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据