4.8 Article

Bioinspired Mild Photothermal Effect-Reinforced Multifunctional Fiber Scaffolds Promote Bone Regeneration

期刊

ACS NANO
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.2c11486

关键词

black phosphorus; mild photothermal therapy; endogenous cells recruitment; nanofiber scaffold; bone regeneration; trauma; fractures; bone tumors; osteoporosis; skeletal malfor

向作者/读者索取更多资源

A bioinspired, staged photothermal effect-reinforced multifunctional scaffold was developed for bone repair. The scaffold possessed near-infrared responsive capability, selectively recruited MSCs, and released antibacterial drugs upon thermal stimulation. The scaffold promoted bone regeneration through the photothermal-mediated up-regulation of heat shock proteins and accelerated biodegradation.
Bone fractures are often companied with poor bone healing and high rates of infection. Early recruitment of mesenchymal stem cells (MSCs) is critical for initiating efficient bone repair, and mild thermal stimulation can accelerate the recovery of chronic diseases. Here, a bioinspired, staged photothermal effect-reinforced multifunctional scaffold was fabricated for bone repair. Uniaxially aligned electrospun polycaprolactone nanofibers were doped with black phosphorus nanosheets (BP NSs) to endow the scaffold with excellent near-infrared (NIR) responsive capability. Apt19S was then decorated on the surface of the scaffold to selectively recruit MSCs toward the injured site. Afterward, microparticles of phase change materials loaded with antibacterial drugs were also deposited on the surface of the scaffold, which could undergo a solid-to-liquid phase transition above 39 degrees C, triggering the release of payload to eliminate bacteria and prevent infection. Under NIR irradiation, photothermal-mediated up-regulation of heat shock proteins and accelerated biodegradation of BP NSs could promote the osteogenic differentiation of MSCs and biomineralization. Overall, this strategy shows the ability of bacteria elimination, MSCs recruitment, and bone regeneration promotion with the assistance of photothermal effect in vitro and in vivo, which emphasizes the design of a bioinspired scaffold and its potential for a mild photothermal effect in bone tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据