4.8 Article

Electro- and Photoinduced Interfacial Charge Transfers in Nanocrystalline Mesoporous TiO2 and TiO2/Iron Porphyrin Sensitized Films under CO2 Reduction Catalysis

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 15, 期 11, 页码 14304-14315

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c22458

关键词

electro-and photochemical CO2 reduction; mesoporous TiO2 film; mesoporous TiO2; iron porphyrin hybrid films; interfacial charge transfers; laser transient absorption spectroscopy

向作者/读者索取更多资源

Electro- and photoinduced charge transfer in nanocrystalline mesoporous TiO2 film and TiO2/iron porphyrin hybrid films under CO2 reduction conditions were studied. The TiO2 film exhibited a reduction in the absorption and lifetime of photogenerated electrons under laser excitation and applied voltage. The TiO2/iron porphyrin films showed faster charge recombination kinetics and exclusive formation of CO during CO2 reduction. The competitive processes between oxidized iron porphyrin and TiO2 conduction band electrons were identified as the reason for the moderate performances of the hybrid films.
Electro-and photochemical CO2 reduction (CO2R) is the quintessence of modern-day sustainable research. We report our studies on the electro-and photoinduced interfacial charge transfer occurring in a nanocrystalline mesoporous TiO2 film and two TiO2/iron porphyrin hybrid films (meso-aryl-and beta-pyrrole-substituted porphyrins, respectively) under CO2R conditions. We used transient absorption spectroscopy (TAS) to demonstrate that, under 355 nm laser excitation and an applied voltage bias (0 to -0.8 V vs Ag/AgCl), the TiO2 film exhibited a diminution in the transient absorption (at -0.5 V by 35%), as well as a reduction of the lifetime of the photogenerated electrons (at -0.5 V by 50%) when the experiments were conducted under a CO2 atmosphere changing from inert N2. The TiO2/iron porphyrin films showed faster charge recombination kinetics, featuring 100-fold faster transient signal decays than that of the TiO2 film. The electro-, photo-, and photoelectrochemical CO2R performance of the TiO2 and TiO2/iron porphyrin films are evaluated within the bias range of -0.5 to -1.8 V vs Ag/AgCl. The bare TiO2 film produced CO and CH4 as well as H2, depending on the applied voltage bias. In contrast, the TiO2/iron porphyrin films showed the exclusive formation of CO (100% selectivity) under identical conditions. During the CO2R, a gain in the overpotential values is obtained under light irradiation conditions. This finding was indicative of a direct transfer of the photogenerated electrons from the film to absorbed CO2 molecules and an observed decrease in the decay of the TAS signals. In the TiO2/iron porphyrin films, we identified the interfacial charge recombination processes between the oxidized iron porphyrin and the electrons of the TiO2 conduction band. These competitive processes are considered to be responsible for the diminution of direct charge transfer between the film and the adsorbed CO2 molecules, explaining the moderate performances of the hybrid films for the CO2R.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据