4.8 Article

Fast Charge-Transport Interface on Primary Particles Boosts High- Rate Performance of Li-Rich Mn-Based Cathode Materials

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 15, 期 10, 页码 13195-13204

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.3c00939

关键词

oxygen activity; charge transport; interface; Li-rich cathode; lithium-ion battery

向作者/读者索取更多资源

A Li-rich Mn-based layered oxide cathode (LLO) is a promising cathode material for high-energy lithium-ion batteries. However, it faces challenges such as sluggish kinetics, oxygen evolution, and structural degradation. In this study, an interfacial optimization of primary particles is proposed to improve ion and electron transport simultaneously. The modified interface containing AlPO4 and carbon enhances Li+ diffusion and reduces charge-transfer resistance, leading to improved charge-transport kinetics. The optimized LLO cathode exhibits a high initial Coulombic efficiency of 87.3% and superior high-rate stability with 88.2% capacity retention after 300 cycles at a 5C high rate.
A Li-rich Mn-based layered oxide cathode (LLO) is one of the most promising cathode materials for achieving high-energy lithium-ion batteries. Never-theless, the intrinsic problems including sluggish kinetics, oxygen evolution, and structural degradation lead to unsatisfactory performance in rate capability, initial Coulombic efficiency, and stability of LLO. Herein, different from the current typical surface modification, an interfacial optimization of primary particles is proposed to improve the simultaneous transport of ions and electrons. The modified interfaces containing AlPO4 and carbon can effectively increase the Li+ diffusion coefficient and decrease the interfacial charge-transfer resistance, thereby achieving fast charge-transport kinetics. Moreover, the in situ high-temperature X-ray diffraction confirms that the modified interface can improve the thermal stability of LLO by inhibiting the lattice oxygen release on the surface of the delithiated cathode material. In addition, the chemical and visual analysis of the cathode-electrolyte interface (CEI) composition clarifies that a highly stable and conductive CEI film generated on the modified electrode can facilitate interfacial kinetic transmission during cycling. As a result, the optimized LLO cathode exhibits a high initial Coulombic efficiency of 87.3% at a 0.2C rate and maintains superior high-rate stability with a capacity retention of 88.2% after 300 cycles at a 5C high rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据