3.9 Article

Performance analysis of the urban climate model MUKLIMO_3 for three extreme heatwave events in Bern

期刊

CITY AND ENVIRONMENT INTERACTIONS
卷 16, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.cacint.2022.100090

关键词

Numerical modelling; Urban heat island; MUKLIMO_3; Urban temperature measurement; Heatwave; Climate adaptation

向作者/读者索取更多资源

The urban climate model MUKLIMO_3 accurately simulates the spatial air temperature patterns during extreme heatwaves in the greater urban area of Bern, Switzerland. This can assist in the development of heat mitigation measures and improvement of public health in cities with complex topography.
Extreme heatwaves represent a health hazard that is expected to increase in the future, and which particularly affects urban populations worldwide due to intensification by urban heat islands. To analyze the impact of such extreme heatwaves on urban areas, urban climate models are a valuable tool. This study examines the perfor-mance of the urban climate model MUKLIMO_3 in modelling spatial air temperature patterns in the greater urban area of Bern, Switzerland, a city in complex topography, during three distinct extreme heatwaves in 2018 and 2019 over a total of 23 days. The model is validated using low-cost air temperature data from 79 (2018) and 84 (2019) measurement sites. The intercomparison of the three extreme heatwaves shows that during the first extreme heatwave 2019 at lower elevation regions in the outskirts of the city, modelled air temperature was higher than observation, which was likely due to pronounced mesoscale cold air advection. During calm and dry days, the air temperature distribution was modelled realistically over all three extreme heatwaves investigated. During daytime, modelled air temperatures were lower across all evaluation sites and all extreme heatwaves when compared to the measured values, with highest median air temperature differences of-3.7 K to-4.8 K found in the late afternoon. At night, MUKLIMO_3 generally shows a slowed cooling, so that higher air tem-peratures were modelled when compared to measured values, with median air temperature biases of +1.5 K to +2.8 K at midnight. By sunrise, the model biases continuously decreased, so that the lowest air temperatures at 7 a.m. were modelled with a bias of +0.2 K to +0.7 K. Peak biases exceed 7 K both during day and night. In sum, our results show that MUKLIMO_3 allows to realistically model the urban air temperature distributions during the peaks of the heatwaves investigated with the highest day and night air temperatures, which may assist in the development of heat mitigation measures to reduce the impacts of heat extremes and improve public health in cities with complex topography.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据