4.2 Article

Ginsenoside Rb1 Attenuates Agonist-Induced Contractile Response via Inhibition of Store-Operated Calcium Entry in Pulmonary Arteries of Normal and Pulmonary Hypertensive Rats

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 35, 期 4, 页码 1467-1481

出版社

KARGER
DOI: 10.1159/000373966

关键词

Ginsenoside Rb1; Store-operated calcium entry; Pulmonary hypertension; Monocrotaline; Chronic hypoxia

资金

  1. National Natural Science Foundation of China [NSFC 31171104, NSFC31371165]
  2. Key Program of Scientific Research of Fujian Medical University [09ZD010]
  3. Fujian Province Hundred Experts Award

向作者/读者索取更多资源

Background: Pulmonary hypertension (PH) is characterized by sustained vasoconstriction, enhanced vasoreactivity and vascular remodeling, which leads to right heart failure and death. Despite several treatments are available, many forms of PH are still incurable. Ginsenoside Rb1, a principle active ingredient of Panax ginseng, exhibits multiple pharmacological effects on cardiovascular system, and suppresses monocrotaline (MCT)-induced right heart hypertrophy. However, its effect on the pulmonary vascular functions related to PH is unknown. Methods: We examined the vasorelaxing effects of ginsenoside Rb1 on endothelin-1 (ET-1) induced contraction of pulmonary arteries (PAs) and store-operated Ca2+ entry (SOCE) in pulmonary arterial smooth muscle cells (PASMCs) from chronic hypoxia (CH) and MCT-induced PH. Results: Ginsenoside Rb1 elicited concentration-dependent relaxation of ET-1-induced PA contraction. The vasorelaxing effect was unaffected by nifedipine, but abolished by the SOCE blocker Gd3+. Ginsenoside Rb1 suppressed cyclopiazonic acid (CPA)-induced PA contraction, and CPA-activated cation entry and Ca2+ transient in PASMCs. ET-1 and CPA-induced contraction, and CPA-activated cation entry and Ca2+ transients were enhanced in PA and PASMCs of CH and MCT-treated rats; the enhanced responses were abolished by ginsenoside Rb1. Conclusion: Ginsenoside Rb1 attenuates ET-1-induced contractile response via inhibition of SOCE, and it can effectively antagonize the enhanced pulmonary vasoreactivity in PH. Copyright (C) 2015 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据