4.6 Article

Low-frequency flicker noise in stochastic ionic transport across atomically thin graphene nanopores

期刊

CELL REPORTS PHYSICAL SCIENCE
卷 4, 期 1, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.xcrp.2022.101210

关键词

-

向作者/读者索取更多资源

This study investigates multivalent cations-modulated low-frequency noise in graphene nanopores and demonstrates that the noise originates from surface charge fluctuations induced by reversible adsorption-desorption of ions. The amplitude of the noise can be greatly controlled up to about 3 orders of magnitude by adding trace amounts of multivalent cations. Additionally, the low-frequency noise can be suppressed by 2 orders of magnitude by adding organic solvents with a high dielectric constant to inhibit interactions between surface charge and ions.
Atomically thin 2D nanopores have emerged as promising platforms from nanofluidics research to practical applications. Low-frequency flicker noise in 2D nanopores limits detection accuracy and perfor-mance of nanopore sensors. However, the physical mechanisms of low-frequency noise are still under debate and achieving its control in 2D nanopores remains challenging. Here, we report multivalent -cations-modulated low-frequency noise in graphene nanopores and demonstrate that low-frequency noise originates from surface charge fluctuations induced by reversible adsorption-desorption of ions. Unexpectedly, its amplitude can be greatly controlled up to about 3 orders of magnitude by a trace of multivalent cations (at least 0.1% of concentration in mixture solutions). Moreover, low-frequency noise can be suppressed by 2 orders of magnitude via adding organic solvents with a high dielectric constant based on suppressing interactions between surface charge and ions. Our findings will facilitate understanding of low-frequency noise in nano -fluidics and design of related applications including ultrasensitive nanofluidic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据