4.5 Article

Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density

期刊

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
卷 140, 期 5, 页码 3607-3618

出版社

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.4966627

关键词

-

向作者/读者索取更多资源

A two-dimensional active acoustic metamaterial with controllable anisotropic density is introduced. The material consists of composite lead-lead zirconate titanate plates clamped to an aluminum structure with air as the background fluid. The effective anisotropic density of the material is controlled, independently for two orthogonal directions, by means of an external static electric voltage signal. The material is used in the construction of a reconfigurable waveguide capable of controlling the direction of the acoustic waves propagating through it. An analytic model based on the acoustic two-port theory, the theory of piezoelectricity, the laminated pre-stressed plate theory, and the S-parameters retrieval method is developed to predict the behavior of the material. The results are verified using the finite element method. Excellent agreement is found between both models for the studied frequency and voltage ranges. The results show that, below 1600 Hz, the density is controllable within orders of magnitude relative to the uncontrolled case. The results also suggest that simple controllers could be used to program the material density toward full control of the directivity and dispersion characteristics of acoustic waves. (C) 2016 Acoustical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据