4.7 Review

Xeroderma pigmentosum group C sensor: unprecedented recognition strategy and tight spatiotemporal regulation

期刊

CELLULAR AND MOLECULAR LIFE SCIENCES
卷 73, 期 3, 页码 547-566

出版社

SPRINGER BASEL AG
DOI: 10.1007/s00018-015-2075-z

关键词

Aging; Diurnal life; DNA repair; Genomic instability; Skin cancer; SUMO; Sunburn; Tumor suppressor; Ubiquitin

资金

  1. Swiss National Science Foundation [143669/1]
  2. Swiss Cancer League [2832-02-2011]
  3. Velux Stiftung [753]
  4. U.S. National Science Foundation [1412692]
  5. University of Illinois at Chicago
  6. Div Of Molecular and Cellular Bioscience
  7. Direct For Biological Sciences [1412692] Funding Source: National Science Foundation

向作者/读者索取更多资源

The cellular defense system known as global-genome nucleotide excision repair (GG-NER) safeguards genome stability by eliminating a plethora of structurally unrelated DNA adducts inflicted by chemical carcinogens, ultraviolet (UV) radiation or endogenous metabolic by-products. Xeroderma pigmentosum group C (XPC) protein provides the promiscuous damage sensor that initiates this versatile NER reaction through the sequential recruitment of DNA helicases and endonucleases, which in turn recognize and excise insulting base adducts. As a DNA damage sensor, XPC protein is very unique in that it (a) displays an extremely wide substrate range, (b) localizes DNA lesions by an entirely indirect readout strategy, (c) recruits not only NER factors but also multiple repair players, (d) interacts avidly with undamaged DNA, (e) also interrogates nucleosome-wrapped DNA irrespective of chromatin compaction and (f) additionally functions beyond repair as a co-activator of RNA polymerase II-mediated transcription. Many recent reports highlighted the complexity of a post-translational circuit that uses polypeptide modifiers to regulate the spatiotemporal activity of this multiuse sensor during the UV damage response in human skin. A newly emerging concept is that stringent regulation of the diverse XPC functions is needed to prioritize DNA repair while avoiding the futile processing of undamaged genes or silent genomic sequences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据