4.2 Article

Elastomeric Cell-Laden Nanocomposite Microfibers for Engineering Complex Tissues

期刊

CELLULAR AND MOLECULAR BIOENGINEERING
卷 8, 期 3, 页码 404-415

出版社

SPRINGER
DOI: 10.1007/s12195-015-0406-7

关键词

Nanocomposite hydrogels; Nanoparticles; Microfibers; Cell matrix interactions; Tissue engineering; Bioadhesive

向作者/读者索取更多资源

Biomaterials-based three dimensional scaffolds with tunable elasticity hold promise in replacing failed organs resulting from injuries, aging, and diseases by providing a suitable cellular microenvironment to facilitate regeneration of damaged tissues. However, controlled presentation of biological signals with tunable tissue mechanics and architecture remain a bottleneck that needs to be addressed to engineer functional artificial tissues. Nanocomposite hydrogels that promote cells adhesion and demonstrate tunable viscoelastic properties could mimic key properties and structures of native tissue. We have developed elastomeric fiber shaped cellular constructs from poly(ethylene glycol) diacrylate, silicate nanoparticles, and gelatin methacrylate via ionic and covalent crosslinking. By controlling the interactions between nanoparticles and polymers, nanocomposite hydrogels with tunable mechanical and degradation properties are fabricated. By encapsulating multiple cell types in these cellular constructs, we demonstrate materials-based control of cell spreading, survival, and proliferation. As a proof-of-concept, we assembled the hydrogel microfibers to obtain multicellular elastomeric tissue constructs. These elastic microfibers may serve as model systems to explore the effect of mechanical stress on cell-matrix interactions. Moreover, such elastomeric hydrogel fibers can be used to engineer scaffold structures, fabric sheets, bundles, or as building blocks for 3D tissue construction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据