4.7 Article

A precise non-destructive damage identification technique of long and slender structures based on modal data

期刊

JOURNAL OF SOUND AND VIBRATION
卷 365, 期 -, 页码 89-101

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2015.12.013

关键词

Modal Analysis; Finite-Element-Method; Eigenfrequency; Non-Destructive-Testing; Damage Identification

向作者/读者索取更多资源

This paper presents numerical and experimental studies on modal behavior of cylindrical, lightly damped beam structures containing a notch-like crack with variable position and geometry. The numerical investigation utilizes the Finite-Element-Method (FEM) and a discretization strategy is developed that enables a crack to be represented in three dimensions. A test procedure capable of delivering a broadband impulse excitation to a flexible supported test specimen was developed. The customized excitation unit was used in conjunction with a Laser-Scanning-Vibrometer (LDV) to analyze a frequency range up to 40 kHz. The first 15 bending mode shape pairs with their corresponding eigenfrequencies are numerically and experimentally identified. The model updating is performed for the elastic parameters and the boundary conditions to minimize the deviation between experimentally determined and numerically calculated results in terms of eigenfrequencies. The acquired data are used in a two-stage damage identification procedure, in which suitable start vectors are found by the evaluation of objective function plots. Subsequently, geometrical crack parameters are identified. The deviations between real and determined crack positions range between 0.05 and 0.28 percent for crack depth/diameter ratios of less than 7 percent. (C) 2015 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据