4.3 Article

On the gassing behavior of lithium-ion batteries with NCM523 cathodes

期刊

JOURNAL OF SOLID STATE ELECTROCHEMISTRY
卷 20, 期 11, 页码 2961-2967

出版社

SPRINGER
DOI: 10.1007/s10008-016-3362-9

关键词

DEMS; IR; NMC; Lithium-ion battery; Gassing

资金

  1. BASF International Network for Batteries and Electrochemistry

向作者/读者索取更多资源

Gas evolution has a profound effect on the functioning of state-of-the-art lithium-ion batteries. On one hand, it is the natural concomitant of solid electrolyte interphase (SEI) formation on the anode (reduction of electrolyte components). On the other hand, because of the demand for high terminal voltages, it is also the consequence of electrolyte and/or cathode material oxidation. Overall, gassing happens on the expense of Coulombic efficiency and additionally raises safety issues. Herein, the gassing behavior of one of the most important commercialized cathode materials, namely Ni-rich Li1 + x Ni0.5Co0.2Mn0.3O2 (NCM523 with 0.01 < x < 0.05), is reported for the first time. We analyze the generation pattern of the most typical gases H-2, C2H4, CO2, and CO during 30 cycles by means of differential electrochemical mass spectrometry combined with Fourier transform infrared spectroscopy. In a long-term test of an NCM523/graphite cell, we monitor its potential-resolved gas evolution and evaluate the total amount of gas from cycle to cycle. An explanation on the characteristic features of pressure versus time curves during cycling is given by combining the spectrometric and total gas pressure data. With additional information from graphite/lithium cells, the identity of gases formed during SEI formation is revealed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据