4.8 Article

Iron corroded granules inhibiting vascular smooth muscle cell proliferation

期刊

MATERIALS TODAY BIO
卷 16, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mtbio.2022.100420

关键词

Vascular smooth muscle cell; Proliferation; Iron -based stent; Corroded granules; Neointimal hyperplasia; In-stent restenosis

资金

  1. National Natural Science Foundation of China [81974223, 81271325]

向作者/读者索取更多资源

This study demonstrated that corroded granules produced by iron stents inhibit vascular smooth muscle cell (VSMC) proliferation and reduce neointimal hyperplasia in an atherosclerotic artery stenosis model. The corroded granules were found to primarily consist of iron oxide. Furthermore, the inhibitory effect on VSMC proliferation was observed to be mediated by the activation of autophagy through the AMPK/mTOR signaling pathway. The safety of iron corroded granules was also confirmed in a rabbit model.
In-stent restenosis after interventional therapy remains a severe clinical complication. Current evidence indicates that neointimal hyperplasia induced by vascular smooth muscle cell (VSMC) proliferation is a major cause of restenosis. Thus, inhibiting VSMC proliferation is critical for preventing in-stent restenosis. The incidence of restenosis was reduced in nitrided iron-based stents (hereafter referred to as iron stents). We hypothesized that the corroded granules produced by the iron stent would prevent in-stent restenosis by inhibiting VSMC proliferation. To verify this hypothesis, we introduced a dynamic circulation device to analyze the components of corroded granules. To investigate the effects of corroded granules on VSMC proliferation, we implanted the corroded iron stent into the artery of the atherosclerotic artery stenosis model. Moreover, we explored the mechanism underlying the inhibition of VSMC proliferation by iron corroded granules. The results indicated that iron stent produced the corroded granules after implantation, and the main component of the corrosion granules was iron oxide. Remarkably, the corroded granules reduced the neointimal hyperplasia in an atherosclerotic artery stenosis model, and iron corroded granules decreased the neointimal hyperplasia by inhibiting VSMC proliferation. In addition, we revealed that corroded granules reduced VSMC proliferation by activating autophagy through the AMPK/mTOR signaling pathway. Importantly, safety of iron corroded granules was evaluated and proved to be satisfactory hemocompatibility in rabbit model. Overall, the role of corroded granules in restenosis prevention was described for the first time. This finding highlighted the implication of corroded granules produced by iron stent in inhibiting VSMC proliferation, pointing to a new direction to prevent in-stent restenosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据