4.6 Article

Enhancement of CO2RR product formation on Cu-ZnO-based electrodes by varying ink formulation and post-treatment methods

期刊

JOURNAL OF PHYSICS-ENERGY
卷 5, 期 2, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/2515-7655/acb8db

关键词

electrochemical CO2 reduction; gas diffusion electrodes; ink composition; CuZn catalysis

向作者/读者索取更多资源

In this study, the influence of electrode structuring and pre-treatment on the electrochemical CO2 reduction reaction (CO2RR) was investigated. The modification of the catalyst environment, such as ink composition and electrode treatment, was found to affect the CO2RR performance. The study showed that selecting proper catalysts and optimizing gas diffusion electrodes can reduce parasitic hydrogen formation and flooding behavior, and enhance C2+ product formation.
Numerous catalysts have been reported with enhanced performance, e.g. longer lifetime and improved selectivity, for the electrochemical CO2 reduction reaction (CO2RR). Respectively little is, however, known about the influence of the electrode structuring and pre-treatment on this reaction for catalytic layers. Thus, we herein report on the modification of the catalyst environment of a Cu-ZnO-carbon black catalyst by variation of the ink composition and subsequent electrode treatment before performing CO2RR. We furthermore provide insight into the impact of different solvents, ionomer, and additives like pore forming agents used for the ink preparation as well as post-treatment steps in terms of pressing and sintering of the generated electrodes on the CO2RR performance. Although using the same catalyst for all electrodes, remarkable differences in hydrophobicity, surface morphology, and electrochemical performance with respect to stability and product distribution were observed. Our study reveals the critical role of the catalytic layer assembly aside from using proper catalysts. We furthermore show that the parasitic hydrogen formation and flooding behavior can be lowered and C2+ product formation can be enhanced when operating in optimized gas diffusion electrodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据